Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 4,
  • pp. 1214-1224
  • (2019)

On the Complexity Reduction of the Second-Order Volterra Nonlinear Equalizer for IM/DD Systems

Not Accessible

Your library or personal account may give you access

Abstract

To cope with the various nonlinear signal distortions in intensity-modulation/direct-detection transmission systems, a theoretical analysis on the Volterra nonlinear equalizer (VNLE) is provided, focusing on computational complexity aspects. The analysis yields a simple reduced-complexity scheme for the second-order VNLE (R2-VNLE) based on a performance-complexity tradeoff. An experimental verification is performed with single-sideband 28-GBaud PAM-4 signals, generated by an electroabsorption modulated distributed-feedback laser, over transmission distances of up to 80 km of standard single-mode fiber in the C-band. A comparison of the results for different equalization schemes, including a signal-signal beat interference mitigation technique, shows superior performance for the R2-VNLE.

© 2018 IEEE

PDF Article
More Like This
Low-complexity sparse absolute-term based nonlinear equalizer for C-band IM/DD systems

Junwei Zhang, Zhenrui Lin, Xiong Wu, Jie Liu, Alan Pak Tao Lau, Changjian Guo, Chao Lu, and Siyuan Yu
Opt. Express 29(14) 21891-21901 (2021)

Low-complexity nonlinear equalizer based on absolute operation for C-band IM/DD systems

Yukui Yu, Tianwai Bo, Yi Che, Deaho Kim, and Hoon Kim
Opt. Express 28(13) 19617-19628 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved