Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 19,
  • pp. 5149-5157
  • (2019)

Symmetry Breaking and Resonances Hybridization in Vertical Split Ring Resonator Metamaterials and the Excellent Sensing Potential

Not Accessible

Your library or personal account may give you access

Abstract

The resonances with narrow linewidths generated in metamaterials are valuable for numerous applications ranging from bio-sensing to narrow-band filter. And breaking structural symmetry of metamaterials is one of the common and efficient approaches to achieve such sharp resonances. In this paper, we present symmetry breaking introduced in vertical split ring resonators (VSRR) metamaterials to excite narrow resonance. Different from the previously reported planar asymmetric metamaterials, the three-dimensional metamaterials are dominantly excited by the magnetic field component of the terahertz illumination together with the electric component. In this case, sharp resonances with characteristic magnetic field distributions are excited. And the sharpest resonance shows up with an ultra-narrow line-width (full width at half maximum, FWHM is 5.90 GHz) and high Q of 327 at 1.93 THz. Through systematic theoretical analysis and numerical mode implementation, we reveal the sharp resonance dips are produced by resonance hybridization between a resonance mode induced by the destruction of the structural symmetry and another special resonance inherent in the symmetric VSRR metamaterials. In addition, the fabrication robustness and sensing potential of the asymmetric VSRR metamaterials are explored in this paper. The results show that the AVSRR design is insensitive to the errors in the fabrication process, like rough metal surface and smooth metal corner, but highly sensitive to the approaching substance, which prove the excellent sensing performance.

© 2019 IEEE

PDF Article
More Like This
Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators

Wei Wang, Fengping Yan, Siyu Tan, Hong Zhou, and Yafei Hou
Photon. Res. 5(6) 571-577 (2017)

Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application

Lei Zhu, Liang Dong, Fan-yi Meng, Jia-hui Fu, and Qun Wu
Appl. Opt. 51(32) 7794-7799 (2012)

Symmetry breaking and strong coupling in planar optical metamaterials

Koray Aydin, Imogen M. Pryce, and Harry A. Atwater
Opt. Express 18(13) 13407-13417 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.