Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 17,
  • pp. 4359-4366
  • (2019)

One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS

Not Accessible

Your library or personal account may give you access

Abstract

The vibration recognition along the fiber is still a challenging problem in pipeline monitoring with distributed optical-fiber acoustic sensor (DAS), because the burying environments in a wide range are complicated, and there are many different vibration sources interfering at different fiber locations, which are unpredictable and changing from time to time. Conventional machine learning methods with fixed hand-crated feature extraction are always time-consuming and laborious, and the recognition is relying heavily on expert knowledge, which has poor generalization ability. Thus, deep learning algorithms have been tried in this area. However, in this paper, it is found that one-dimensional (1-D) CNN can extract the distinguishable properties of the vibration signals of DAS with better performance and efficiency than the 2-D CNN through real field data experiments. And there are two main increment of the work: First, we try to use an efficient 1-D CNN to replace the 2-D CNN for feature extraction, which can improve the computation efficiency by directly feeding raw or the denoised data without any transformation or other manual work, and using simpler network structure; second, we optimize the classification further by replacing the softmax layer by the support vector machine (SVM) classifier, which is selected optimally from several typical classifiers, such as SVM, random forest, and extreme gradient boosting. Finally, the proposed method (1-D CNN+SVM) can achieve an average recognition accuracy of over 98% for five main classes of typical DAS signals in the oil pipeline monitoring application, which is superior to the conventional machine learning methods with fixed hand-crated feature. At the same time, both accuracy and efficiency of the method are better than those of the 2-D CNN.

PDF Article
More Like This
Intelligent target recognition for distributed acoustic sensors by using both manual and deep features

Huijuan Wu, Chaoqun Wang, Xinyu Liu, DengKe Gan, Yimeng Liu, Yunjiang Rao, and Abdulafeez Olawale Olaribigbe
Appl. Opt. 60(23) 6878-6887 (2021)

Optical fiber vibration signal recognition based on an efficient multidimensional feature extraction network

Yuzhou Du, Banglian Xu, Leihong Zhang, and Yiqiang Zhang
Appl. Opt. 63(8) 2011-2019 (2024)

Machine learning methods for identification and classification of events in ϕ-OTDR systems: a review

Deus F. Kandamali, Xiaomin Cao, Manling Tian, Zhiyan Jin, Hui Dong, and Kuanglu Yu
Appl. Opt. 61(11) 2975-2997 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.