Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 11,
  • pp. 2527-2533
  • (2019)

High-Sensitivity Instantaneous Microwave Frequency Measurement Based on a Silicon Photonic Integrated Fano Resonator

Not Accessible

Your library or personal account may give you access

Abstract

Instantaneous frequency measurement (IFM) based on a silicon photonic Fano resonator with improved linearity and sensitivity is proposed and experimentally demonstrated. The Fano resonator has a steep edge in its spectral response, which is employed to translate the frequency information of a microwave signal to an optical power change. When comparing the optical powers at the output and input of the Fano resonator, a highly linear amplitude comparison function (ACF), which is used to estimate the microwave frequency is obtained. The key device in the system is the Fano resonator, which is realized by coupling a grating-based Fabry–Perot cavity resonant mode with an add-drop microring resonator mode, implemented on a silicon platform. The linearity of the ACF is characterized by its R-squared value which is calculated by fitting the ACF measurements with a linear function. In our experimental demonstration, an R-squared value as large as 0.99 is obtained. A frequency measurement range as large as 15 GHz with a resolution better than ±0.5 GHz is achieved. The use of the proposed IFM system to perform Brillouin frequency discrimination in a fiber-optic sensor for temperature measurement is demonstrated.

© 2018 IEEE

PDF Article
More Like This
High-resolution microwave frequency measurement based on dynamic frequency-to-power mapping

Shijie Song, Suen Xin Chew, Linh Nguyen, and Xiaoke Yi
Opt. Express 29(26) 42553-42568 (2021)

Instantaneous microwave frequency measurement using few-mode fiber-based microwave photonic filters

Zhiyong Zhao, Kun Zhu, Linyue Lu, and Chao Lu
Opt. Express 28(25) 37353-37361 (2020)

Instantaneous microwave frequency measurement with single branch detection based on the birefringence effect

Wei Zhu, Jing Li, Li Pei, Tigang Ning, Jingjing Zheng, and Jianshuai Wang
Appl. Opt. 61(20) 5894-5901 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.