Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 17,
  • pp. 3594-3602
  • (2018)

Temperature-Dependent Modeling of Cladding-Pumped $\text{Er}^{3+}$ / $\text{Yb}^{3+}$ -Codoped Fiber Amplifiers for Space Applications

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a multiphysics modeling of rare earth-doped cladding-pumped fiber amplifiers to predict the device performance with respect to the constraints associated with space missions. By combining the 3-D nonhomogeneous heat conduction equation with the nonlinear rate equations, the developed numerical algorithm makes possible the calculation of the spatial distribution of the different optical signals and temperature profiles. The temperature dependence of the refractive index, emission, and absorption cross sections, as well as the radiation induced attenuation and the lifetime versus the deposited dose have been considered, too. They lead to the optical signals changing inside the fiber creating a feedback loop that influences the temperature distribution within the fiber. Different operational regimes for a representative fiber design as well as different cooling configurations have been investigated. The obtained numerical results highlight that the thermal field inside the fiber could strongly deteriorate the amplifier performance especially in the space radiation environment.

© 2018 IEEE

PDF Article
More Like This
Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optical communications

Ayoub Ladaci, Sylvain Girard, Luciano Mescia, Arnaud Laurent, Carine Ranger, David Kermen, Thierry Robin, Benoit Cadier, Mathieu Boutillier, Baidy Sane, Emmanuel Marin, Adriana Morana, Youcef Ouerdane, and Aziz Boukenter
Opt. Lett. 43(13) 3049-3052 (2018)

Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application

Sylvain Girard, Marilena Vivona, Arnaud Laurent, Benoît Cadier, Claude Marcandella, Thierry Robin, Emmanuel Pinsard, Aziz Boukenter, and Youcef Ouerdane
Opt. Express 20(8) 8457-8465 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved