Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 4,
  • pp. 1166-1176
  • (2016)

Indoor Position Tracking Using Multiple Optical Receivers

Not Accessible

Your library or personal account may give you access

Abstract

An indoor positioning system is a key component in enabling location-based services in future wireless networks. The need for a highly accurate indoor positioning system is rapidly increasing. In the past couple of years, several positioning systems based on visible light communications that achieve good positioning accuracy have been proposed. Some of these systems are based on assumptions such as complete knowledge of the height of the receiver, and exact alignment of the transmitter and receiver normals to the normal of the ceiling. Some other systems do not support user mobility because they require a user to vary the receiver orientation at a fixed location. Another common assumption is that the transmitters are at the same height from the ground. In order to support user mobility, this paper proposes a novel positioning system using multiple optical receivers that provides coordinates and an orientation of the mobile receiver. The remarkable features of the system are as follows: 1) the receiver can be mobile; 2) the positioning is done within 2.5 ms in our experimental setup; 3) the heights of the transmitters need not be the same; 4) the receiver's height need not be known; and 5) the receiver's normal need not be aligned with those of the transmitters. Experimental results show that mean position errors of less than 0.06 m is achievable even when the average receiver speed is 1.3 m/s.

© 2015 IEEE

PDF Article
More Like This
Indoor optical wireless communication system with continuous and simultaneous positioning

Ke Wang, Tingting Song, Sithamparanathan Kandeepan, Hongtao Li, and Kamal Alameh
Opt. Express 29(3) 4582-4595 (2021)

Indoor receiving signal strength based visible light positioning enabled with equivalent virtual lamps

Wenjing Sun, Jian Chen, and Changyuan Yu
Appl. Opt. 62(17) 4583-4590 (2023)

Hologram Selection in Realistic Indoor Optical Wireless Systems With Angle Diversity Receivers

Mohammed T. Alresheedi and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 7(8) 797-813 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.