Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 2,
  • pp. 618-625
  • (2016)

Distributed Aggregation of Spectrally Efficient Single- and Dual-Polarization Super-Channels by Optical Frequency Conversion in Fiber

Not Accessible

Your library or personal account may give you access

Abstract

Recently developed upgrade options for distributed ultra-dense frequency-division multiplexing toward large aggregation capacity are discussed. The concept, originally demonstrated for distributed coherent optical orthogonal frequency-division multiplexing, is based on optical frequency conversion in fiber. It enables precise frequency allocation of the successively multiplexed subcarriers within the super-channel without the need of absolute optical frequency control, i.e., allowing for use of free-running lasers at the individual multiplexing nodes. Follow-up experiments proved the applicability of this concept also to Nyquist wavelength-division multiplexing (WDM) with extremely small guard bands by successfully demonstrating the distributed aggregation of a spectrally efficient 400-Gb/s single-polarization zero-guard-band Nyquist-WDM super-channel using 4× 28-GBd 16-ary quadrature-amplitude modulation (16QAM) subcarriers. Recently, we further extended the concept to distributed generation of dual-polarization super-channels. This extension allowed for the distributed aggregation of a 400-Gb/s Nyquist-WDM super-channel using 4× 28-GBd polarization-division multiplexed quaternary phase-shift keying (PDM-QPSK) subcarriers. In this invited contribution, we review and compare in detail both experiments enabling 400-Gb/s aggregation capacity. Additionally, we discuss a viable option for operation under random fiber birefringence regardless of the polarization-dependent nature of the underlying optical frequency conversion process.

© 2015 IEEE

PDF Article
More Like This
Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung-Chang Chien, Yi Cai, Xin Xiao, and Xinying Li
Opt. Express 21(13) 15686-15691 (2013)

Adaptive quadrature-polybinary detection in super-Nyquist WDM systems

Sai Chen, Chongjin Xie, and Jie Zhang
Opt. Express 23(6) 7933-7939 (2015)

Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection

Kaiheng Zou, Yixiao Zhu, Fan Zhang, and Zhangyuan Chen
Opt. Lett. 41(12) 2767-2770 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved