Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 24,
  • pp. 5122-5132
  • (2015)

Modulation Schemes for Single-Laser 100 Gb/s Links: Multicarrier

Not Accessible

Your library or personal account may give you access

Abstract

We evaluate multicarrier modulation methods for 100 Gb/s single-wavelength data center interconnects. We consider two different orthogonal frequency-division multiplexing (OFDM) techniques: DC-biased OFDM (DC-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM). We also consider two different techniques for bit loading and power allocation: fixed bit loading with preemphasis and optimized bit loading and power allocation. We first present a semianalytical performance and complexity evaluation of these OFDM methods including the effects of linear filtering, clipping, and quantization. We then include the effects of chromatic dispersion and chirp, as well as intensity and shot noises. Performance is quantified in terms of the required average optical power to achieve a target bit-error probability for a given modulator bandwidth. Complexity is quantified in terms of the resolution and sampling rate required of digital-to-analog (DAC) and analog-to-digital (ADC) converters, as well as the number of signal processing operations required. For each OFDM technique, we adjust the clipping ratio to minimize the optical power requirement. For DC-OFDM, taking into account the DAC frequency response reduces the optical power requirement up to 2 dB. ACO-OFDM is more power efficient and requires lower DAC/ADC resolution than DC-OFDM, but ACO-OFDM requires prohibitively high sampling rates owing to its poor spectral efficiency.

© 2015 IEEE

PDF Article
More Like This
Theoretical and experimental evaluation of clipping and quantization noise for optical OFDM

Christian R. Berger, Yannis Benlachtar, Robert I. Killey, and Peter A. Milder
Opt. Express 19(18) 17713-17728 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved