Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 13,
  • pp. 2899-2904
  • (2015)

Compensation of the Dispersion-Induced Power Fading in an Analog Photonic Link Based on PM–IM Conversion in a Sagnac Loop

Not Accessible

Your library or personal account may give you access

Abstract

An analog photonic link with the compensation of the dispersion-induced power fading is proposed and demonstrated based on phase modulation to intensity modulation conversion in a Sagnac loop. Due to the velocity mismatch of the modulator, only the incident light wave along the clockwise direction is effectively modulated by the radio frequency signals, while the counterclockwise light wave is not modulated. After combining the two light waves in a polarizer, an intensity modulated optical signal is generated, which can be directly detected. In addition, the phase difference between the two light waves can be adjusted through the polarization controller before the polarizer. This feature is used to shift the frequency response of a dispersive link to compensate the dispersion-induced power fading at any working frequency. Experimental results show that the power fading after transmission over both 25 and 50 km lengths of fiber in a conventional intensity modulated link can be successfully compensated in the proposed link, and thus, a high and constant link gain over a large frequency range is achieved. The spur-free dynamic ranges of the link before and after fiber transmission are also measured.

© 2015 IEEE

PDF Article
More Like This
Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading

Haiting Zhang, Shilong Pan, Menghao Huang, and Xiangfei Chen
Opt. Lett. 37(5) 866-868 (2012)

Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator

Beilei Wu, Ming Zhu, Mu Xu, Jing Wang, Muguang Wang, Fengping Yan, Shuisheng Jian, and Gee-Kung Chang
Opt. Lett. 40(9) 2103-2106 (2015)

Broadband chromatic-dispersion-induced power-fading compensation for radio-over-fiber links based on Hilbert transform

Mingzheng Lei, Zhennan Zheng, Jinwang Qian, Mutong Xie, Yunping Bai, Xinlu Gao, and Shanguo Huang
Opt. Lett. 44(1) 155-158 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.