Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 19,
  • pp. 3181-3187
  • (2013)

Noise Figure in Near-Infrared Amorphous and Mid-Infrared Crystalline Silicon Optical Parametric Amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

The noise figures (NF) of near-infrared (near-IR) amorphous silicon (a-Si) and mid-infrared (mid-IR) crystalline silicon (c-Si) optical parametric amplifiers (OPA) are numerically investigated. The impact of nonlinear losses, i.e., two-photon absorption (TPA) and TPA-induced free carrier absorption (FCA), as well as Raman-effect-induced complex nonlinear coefficient are taken into account in a-Si OPAs. The amplified spontaneous emission (ASE) of Erbium-doped fiber amplifiers (EDFA) and the relative intensity noise (RIN) of the pump laser are considered as the dominant pump noises when simulating the pump transferred noise (PTN) of near-IR a-Si and mid-IR c-Si OPAs, respectively. It is shown that in typical near-IR a-Si OPAs, the NF is ∼5 dB on the Stokes side but increases sharply to above 10 dB at the gain edge on the anti-Stokes side. In high-gain mid-IR c-Si OPAs, the NF is dominated by the PTN and is well above 10 dB at the gain edge. These results indicate that both near-IR a-Si OPAs and mid-IR c-Si OPAs are promising alternatives to near-IR c-Si OPAs, but they both have limitations in broadband operation.

© 2013 IEEE

PDF Article
More Like This
Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers

Zhi Tong, Adonis Bogris, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 18(3) 2884-2893 (2010)

Gain and noise characteristics of high-bit-rate silicon parametric amplifiers

Xinzhu Sang and Ozdal Boyraz
Opt. Express 16(17) 13122-13132 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved