Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 5,
  • pp. 559-567
  • (2009)

Bending Effects on Highly Birefringent Photonic Crystal Fibers With Low Chromatic Dispersion and Low Confinement Losses

Not Accessible

Your library or personal account may give you access

Abstract

Photonic crystal fibers (PCFs) with elliptical air-holes located in the core area that exhibit high birefringence, low losses, enhanced effective mode area, and low chromatic dispersion across a wide wavelength range have been presented. The effects of bending on birefringence, confinement losses and chromatic dispersion of the fundamental mode of the proposed PCFs have been thoroughly investigated by employing the full vectorial finite element method (FEM). Additionally, localization of higher order modes is presented. Also, effects of angular orientation on bending loss have been reported. Significant improvement on key propagation characteristics of the proposed PCFs are demonstrated by carefully altering the desired air hole diameters and their geometries and the hole-to-hole spacing.

© 2009 IEEE

PDF Article
More Like This
Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses

Kunimasa Saitoh, Nikolaos Florous, and Masanori Koshiba
Opt. Express 13(21) 8365-8371 (2005)

High birefringence photonic crystal fiber with high nonlinearity and low confinement loss

Tianyu Yang, Erlei Wang, Haiming Jiang, Zhijia Hu, and Kang Xie
Opt. Express 23(7) 8329-8337 (2015)

Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes

Yong Soo Lee, Chung Ghiu Lee, Yongmin Jung, and Soeun Kim
Appl. Opt. 54(20) 6140-6145 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.