Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 16,
  • pp. 3654-3661
  • (2009)

Fiber Nonlinearities in Systems Using Electronic Predistortion of Dispersion at 10 and 40 Gbit/s

Not Accessible

Your library or personal account may give you access

Abstract

Electronic predistortion (EPD) to compensate for chromatic dispersion is an attractive option to replace inline optical dispersion compensation (ODC). In this paper, we present a study on the impact of intra- and interchannel nonlinearities in EPD systems compared to optimized ODC systems at 10 and 40Gbit/s for NRZ-OOK modulation. First, the theoretically achievable nonlinear tolerance of EPD and ODC systems is studied by neglecting the EPD transmitter's hardware limitations and the dispersion compensating fiber's loss and nonlinearity. At 10Gbit/s, EPD shows stronger degradations due to intra- and interchannel nonlinearities than optimized ODC. We extend existing studies for 10 Gbit/s EPD by analyzing the relevant launch power levels before interchannel nonlinearities limit the performance. The limit is 8 dB larger for ODC than EPD at 10 Gbit/s. In contrast, operating at a bit rate of 40 Gbit/s significantly reduces this difference in the nonlinearity tolerance between EPD and ODC both for single channel and WDM transmission. The maximum power per channel of 40 Gbit/s EPD is only 1 dB smaller compared to ODC.We then conduct a more realistic comparison at 40 Gbit/s by including the effects of 60 GSa/s digital-to-analog conversion with 4-bit quantization in the EPD transmitter and by considering the loss and nonlinearity of the dispersion compensating fiber. Analyzing the optical signal-to-noise ratio margins confirms that the performance of the realistic EPD system is similar to optimized ODC making EPD more attractive for electronic dispersion compensation at bit rates of 40 Gbit/s and above.

© 2009 IEEE

PDF Article
More Like This
Electronic Postcompensation of Fiber Nonlinearity for 40 Gbit∕s WDM Systems

Nisar Ahmed, M. I. Hayee, and Q. Zhang
J. Opt. Commun. Netw. 2(7) 456-462 (2010)

10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation

Robert Waegemans, Stefan Herbst, Ludwig Holbein, Philip Watts, Polina Bayvel, Cornelius Fürst, and Robert I. Killey
Opt. Express 17(10) 8630-8640 (2009)

Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems

J. Zhao, M. E. McCarthy, and A. D. Ellis
Opt. Express 16(20) 15353-15365 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved