Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 12,
  • pp. 2117-2124
  • (2009)

Optimization of Wavelength-Locking Loops for Fast Tunable Laser Stabilization in Dynamic Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a theoretical model of a wavelength-locking loop for stabilization of the output wavelength in multisection tunable lasers for their application in future dynamic optical burst-switched networks. The linearized theoretical model was used to derive expressions for the optimal PID coefficients of a control circuit for etalon-based wavelength-locking control loop as a function of the key loop parameters. The validity of the model was then experimentally verified by measurements of locking performance of a digital supermode-distributed Bragg reflector tunable laser based on the proposed model.

© 2009 IEEE

PDF Article
More Like This
Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser

Kenji Numata, Jeffrey R. Chen, and Stewart T. Wu
Opt. Express 20(13) 14234-14243 (2012)

Suppression of thermal wavelength drift in widely tunable DS-DBR laser for fast channel-to-channel switching

Sanghwa Yoo, Joon Ki Lee, and Kwangjoon Kim
Opt. Express 25(24) 30406-30417 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.