Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 8,
  • pp. 2060-2068
  • (2007)

Intersymbol Interference (ISI) Suppression Technique for Optical Binary and Multilevel Signal Generation

Not Accessible

Your library or personal account may give you access

Abstract

An intersymbol interference (ISI)-suppressed optical multilevel modulation technique that is applicable to a wide range of binary and multilevel signaling is proposed. It employs binary phase-shift keying modulations that are generated by Mach–Zehnder intensity modulators as basic building blocks, and complex multilevel modulations are synthesized using interferometric addition and tandem modulations. Its feasibility and ISI suppression effect are verified in various binary and multilevel signal synthesis schemes using numerical simulations. Furthermore, the generation of ISI-suppressed zero-chirp binary and quaternary amplitude-shift keying modulations is experimentally demonstrated. Finally, its applicability to complex optical multilevel signaling is shown in the generation of a 40-Gb/s 16-level amplitude- and phase-shift keying signal, which results in 3-dB sensitivity improvement compared with the one using a conventional four-level electrical driving signal.

© 2007 IEEE

PDF Article
More Like This
Reconfigurable multilevel transmitter using monolithically integrated quad Mach-Zehnder IQ modulator for optical 16-QAM and 8-PSK generation

Guo-Wei Lu, Takahide Sakamoto, Akito Chiba, Tetsuya Kawanishi, Tetsuya Miyazaki, Kaoru Higuma, Masaaki Sudo, and Junichiro Ichikawa
Opt. Express 19(6) 5596-5601 (2011)

Photonic generation of binary and quaternary phase-coded microwave signals by utilizing a dual-polarization dual-parallel Mach-Zehnder modulator

Peng Li, Lianshan Yan, Jia Ye, Yan Pan, Wei Pan, Bin Luo, Xihua Zou, Tao Zhou, Zhiyu Chen, and Maowen Wang
Opt. Express 26(21) 28013-28021 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.