Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 11,
  • pp. 3563-3574
  • (2007)

Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect

Not Accessible

Your library or personal account may give you access

Abstract

We investigate the microhole collapse property of different photonic crystal fibers (PCFs) and its effect on the splice loss using an electric arc fusion splicer. The physical mechanism of the splice loss for different kinds of PCFs is studied, and a guideline for splicing these PCFs and conventional single-mode fibers (SMFs) is proposed. We demonstrate a low-loss fusion splicing of five different PCFs with SMFs, including large-mode PCF, hollow-core PCF, nonlinear PCFs, and polarization-maintaining PCF.

© 2007 IEEE

PDF Article
More Like This
Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber

Tao Zhu, Fufeng Xiao, Laicai Xu, Min Liu, Ming Deng, and Kin Seng Chiang
Opt. Express 20(22) 24465-24471 (2012)

Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges

Limin Xiao, Wei Jin, and M. S. Demokan
Opt. Lett. 32(2) 115-117 (2007)

More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing

Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks
Opt. Lett. 34(14) 2240-2242 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved