Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 10,
  • pp. 3035-3050
  • (2007)

Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification

Not Accessible

Your library or personal account may give you access

Abstract

An alternative application of distributed Raman amplification (DRA) for ultralong-haul optical fiber transmission is proposed. In our study, the DRA is employed in a transmission system using midway optical phase conjugation (OPC) for amplifying an optical signal and, at the same time, for constructing signal power evolution, which is symmetrical with respect to the midpoint of the system where the OPC is performed. Then, the nonlinear signal waveform distortions that are caused by the Kerr effect, as well as fiber dispersion, are almost completely compensated by the OPC, whereas the fiber loss is compensated by the DRA. Three possible symmetrical signal power maps—a power map that has a reverse sign of the power map that is caused by lump amplification, a flat signal power map, and an arbitrary symmetrical signal power map—are numerically designed by using appropriate Raman pump powers. We show that the flat power map exhibits smaller difference from the target and a higher optical signal-to-noise ratio and requires lower pump power than the other two power maps. Numerical simulation results demonstrate that, by employing the flat power maps with a span of 40 km, a single-wavelength signal whose data rate is 160 Gb/s can be successfully transmitted over 5000 km, and the Kerr effect is sufficiently suppressed near limitation due to the nonlinear accumulation of noise. Finally, we study the feasibility of expanding our method to wavelength-division-multiplexed signal transmission by designing a DRA gain with multiple-wavelength pumping to simultaneously obtain a flat power map and a wide-and-flat gain bandwidth. By using four-wavelength Raman pumps while carefully choosing pump wavelengths and their powers, we achieve the DRA gain that simultaneously gives a fluctuation of the signal power of only 3.5%, a gain ripple of only 5.3%, and, at the same time, a gain bandwidth of as wide as 46 nm.

© 2007 IEEE

PDF Article
More Like This
Kerr nonlinearity mitigation in 5 × 28-GBd PDM 16-QAM signal transmission over a dispersion-uncompensated link with backward-pumped distributed Raman amplification

Isaac Sackey, Francesco Da Ros, Mahmoud Jazayerifar, Thomas Richter, Christian Meuer, Markus Nölle, Lutz Molle, Christophe Peucheret, Klaus Petermann, and Colja Schubert
Opt. Express 22(22) 27381-27391 (2014)

Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation

Mohammad A. Z. Al-Khateeb, Md. Asif Iqbal, Mingming Tan, Abdallah Ali, Mary McCarthy, Paul Harper, and Andrew D. Ellis
Opt. Express 26(3) 3145-3160 (2018)

Distributed-Raman-amplification effect on pulse interactions and collisions in long-haul dispersion-managed soliton transmissions

Erwan Pincemin, Dominique Hamoir, Olivier Audouin, and Stefan Wabnitz
J. Opt. Soc. Am. B 19(5) 973-980 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.