Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 3,
  • pp. 1433-
  • (2006)

All-Optical Silicon Modulators Based on Carrier Injection by Two-Photon Absorption

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a theoretical analysis of a silicon all-optical modulator based on free-carrier injection by two-photon absorption (TPA) in a highly light-confining structure. In spite of the weak optoelectronic properties of silicon, strong light confinement allows high modulation depths in very compact devices requiring low-energy pump pulses. This analysis is applied to 1-5 µm radius silicon ring resonators with the pump pulse coupled on-chip and including in the model the scattering loss due to sidewall roughness originating from the fabrication process. The calculations show that using this scheme, modulation depths greater than 80% can be achieved, with no more than 3 pJ of pump pulse energy, at speeds on the order of 10 GHz.

© 2006 IEEE

PDF Article
More Like This
All-optical modulation using two-photon absorption in silicon core optical fibers

P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock
Opt. Express 19(20) 19078-19083 (2011)

Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared

Li Shen, Noel Healy, Colin J. Mitchell, Jordi Soler Penades, Milos Nedeljkovic, Goran Z. Mashanovich, and Anna C. Peacock
Opt. Lett. 40(10) 2213-2216 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved