Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 11,
  • pp. 4108-4119
  • (2006)

Circular-Birefringence Fiber for Nonlinear Optical Signal Processing

Not Accessible

Your library or personal account may give you access

Abstract

The circular-birefringence fiber (CBF) or the so-called twisted fiber provides novel attractive potential for all-optical signal-processing applications. Unlike a standard nonpolarization-maintaining (non-PM) fiber, where the polarization dependence of χ<sup>3</sup> nonlinearity is averaged out by the residual birefringence, the CBF behaves as a perfectly isotropic fiber in terms of nonlinear wave propagation. The CBF, therefore, allows the utilization of the intrinsic absolute polarization dependence of χ<sup>3</sup> nonlinearity in realizing novel functions that can never be obtained with a non-PM fiber. Several types of CBF are successfully fabricated by twisting commercial non-PM fibers at 15 turns/m, and their unique potential is experimentally demonstrated. First, a novel type of all-optical intensity discriminator is realized using the effect of ellipse rotation in CBF, which is absent in a non-PM fiber. The demonstrated device is directly applicable to all-optical data reshaping, pulse compression, pedestral suppression, and enhanced mode-locking of fiber lasers. Next, a 160-Gb/s polarization-insensitive wavelength conversion is demonstrated by using cross-phase modulation in CBF with a circularly polarized probe wave. In addition to its simplicity and robustness, the scheme is readily upgradable to polarization-insensitive all-optical data regeneration.

© 2006 IEEE

PDF Article
More Like This
Polarization-insensitive 160-Gb/s wavelength converter with all-optical repolarizing function using circular-birefringence highly nonlinear fiber

Takuo Tanemura, Ju Han Lee, Dexiang Wang, Kazuhiro Katoh, and Kazuro Kikuchi
Opt. Express 14(4) 1408-1412 (2006)

Nonlinear polarizers based on four-wave mixing in high-birefringence optical fibers

Massimiliano Guasoni and Stefan Wabnitz
J. Opt. Soc. Am. B 29(6) 1511-1520 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.