Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 23,
  • Issue 4,
  • pp. 1729-
  • (2005)

Tunable Passive All-Optical Pulse Repetition Rate Multiplier Using Fiber Bragg Gratings

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a tunable passive all-optical pulse repetition rate multiplier based on the fractional temporal Talbot effect. The multiplier comprises a series of identical linearly chirped fiber Bragg gratings (LCFBGs) interconnected via two multiport (N x N) switches. Discrete multiplication factors are obtained by simply using the switch to set the optical path of the input pulse train to be reflected by the required number of gratings, and hence, corresponding dispersion, to satisfy the Talbot condition. In our demonstration, we reflect an 8.62-GHz input pulse train from a cascade of one to four LCFBGs, resulting in discrete repetition rate multiplication factors of 12, 6, 4, and 3, respectively. We obtain output repetition rates exceeding 100 GHz; the multiplied train exhibits excellent signal stability with low amplitude ripple and timing jitter, and the output pulses are of similar duration to those at the input.

© 2005 IEEE

PDF Article
More Like This
2~5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating

Ju Han Lee, You Min Chang, Young-Geun Han, Sang Hyuck Kim, and Sang Bae Lee
Opt. Express 12(17) 3900-3905 (2004)

Influence of nonideal chirped fiber Bragg grating characteristics on all-optical clock recovery based on the temporal Talbot effect

Masaki Oiwa, Shunsuke Minami, Kenichiro Tsuji, Noriaki Onodera, and Masatoshi Saruwatari
Appl. Opt. 48(4) 679-690 (2009)

Ultrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train

Miguel A. Preciado and Miguel A. Muriel
Opt. Express 15(19) 12102-12107 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved