Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 22,
  • Issue 6,
  • pp. 1472-
  • (2004)

Performance Analysis and Comparison of Optical 3R Regenerators Utilizing Self-Phase Modulation in Fibers

Not Accessible

Your library or personal account may give you access

Abstract

Performance of fiber-based optical signal regenerators consisting of a synchronous amplitude modulator, a highly nonlinear fiber, and an optical bandpass filter is analyzed. The regenerators are operated in two different schemes: one utilizes solitonlike pulse compression in anomalous-dispersion fiber and subsequent filtering, and the other utilizes spectrum broadening in normal-dispersion fiber and subsequent spectrum slicing. Regeneration performance is compared for the two schemes in terms of the shape of energy transfer function and abilities of noise and timing-jitter reduction. Although both types of regenerators show good regenerator performance, the one based on spectrum broadening and slicing has better ability to stabilize signal amplitude while requiring larger signal power launched into the nonlinear fiber. The effectiveness of the regenerators in single-channel quasi-linear highly dispersed pulse transmission and dispersion-managed soliton transmission is also numerically examined.

© 2004 IEEE

PDF Article
More Like This
Design scaling rules for 2R-optical self-phase modulation-based regenerators

Lionel Provost, Christophe Finot, Periklis Petropoulos, Kazunori Mukasa, and David J. Richardson
Opt. Express 15(8) 5100-5113 (2007)

Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton
Opt. Express 13(19) 7637-7644 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved