Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 22,
  • Issue 1,
  • pp. 29-
  • (2004)

Broad-band Dynamic Dispersion Compensation in Nonlinear Fiber-Based Device

Not Accessible

Your library or personal account may give you access

Abstract

In this paper we report on the design, numerical simulation and experimental testing of a novel dynamic dispersion compensation device based on self-phase modulation (SPM) in nonlinear fiber. The proposed all-fiber device is inherently simple and presents several unique advantages, most notably the potential for a broad-band operation covering all wave-length division multiplexing (WDM) channels of a system and the ability to address variable amounts of residual dispersion in each individual channel. Dynamic compensation ranges of up to 140 ps/nm for a single-stage and 240 ps/nm for a two-stage device are demonstrated with 40 Gb/s CS-RZ signal. It is shown that the device can operate with a minimum channel spacing of 200 GHz. For a two-stage device with inter-stage spectral filtering, simultaneous dynamic dispersion compensation (130 ps/nm for 1 dB penalty) and 2R regeneration (2 dB receiver sensitivity improvement) are demonstrated.

© 2004 IEEE

PDF Article
More Like This
Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation

Mark D. Pelusi and Benjamin J. Eggleton
Opt. Express 20(7) 8015-8023 (2012)

All-optical multichannel 2R regeneration in a fiber-based device

Michael Vasilyev and Taras I. Lakoba
Opt. Lett. 30(12) 1458-1460 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.