Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 21,
  • Issue 3,
  • pp. 648-
  • (2003)

Design and Implementation of Wavelength-Flexible Network Nodes

Not Accessible

Your library or personal account may give you access

Abstract

This paper analytically and experimentally examines node architectures for wavelength-routing networks, with emphasis on the degree of wavelength conversion provided. Wavelength flexibility simplifies network management and increases network capacity but requires large cross-connects and deployment of wavelength converters (WCs). A simple probabilistic model is used to upper-bound the number of WCs required at a network node, under dynamic traffic load. When provisioned in a shareable pool, with a fixed number of wavelength channels per fiber, the number of WCs required remains low as overall network capacity is scaled up. Motivated by this analysis, experiments demonstrate the feasibility of implementing wavelength-flexible network nodes using large microelectromechanical (MEMS)-based cross-connects and all-optical WCs. In one design, WCs were attached directly to cross-connect output ports, and in another, they were attached in a loop-back fashion to allow sharing. Error-free transmission at 10 Gb/s was demonstrated in both cases.

[IEEE ]

PDF Article
More Like This
Node Architecture and Design of Flexible Waveband Routing Optical Networks

Hiroshi Hasegawa, Suresh Subramaniam, and Ken-ichi Sato
J. Opt. Commun. Netw. 8(10) 734-744 (2016)

Introducing Node Architecture Flexibility for Elastic Optical Networks

Norberto Amaya, Georgios Zervas, and Dimitra Simeonidou
J. Opt. Commun. Netw. 5(6) 593-608 (2013)

Cost Feasibility Analysis of Translucent Optical Networks With Shared Wavelength Converters

Oscar Pedrola, Davide Careglio, Miroslaw Klinkowski, Josep Solé-Pareta, and Keren Bergman
J. Opt. Commun. Netw. 5(2) 104-115 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.