Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 21,
  • Issue 1,
  • pp. 246-
  • (2003)

Fabrication and Characterization of PhotonicDevices Directly Written in Glass UsingFemtosecond Laser Pulses

Not Accessible

Your library or personal account may give you access

Abstract

Both straight and curved waveguides are written in a variety of silicate glasses using near-IR femtosecond laser pulses. Writing parameters are identified that produce waveguides that support only a single mode and yield smooth-mode profiles. The laser pulse-induced refractive index change is reconstructed from near-field mode profile data using the scalar wave equation and by refractive near-field profiling. Waveguide propagation losses are determined by throughput and Fabry-Pérot resonator measurements. Both coarse and fine period gratings are written and characterized, and the thermal stability of these gratings is investigated. The utility of the femtosecond writing technique is demonstrated by fabricating an optical interleaver.

[IEEE ]

PDF Article
More Like This
Fabrication of photonic devices directly written within glass using a femtosecond laser

Ik-Bu Sohn, Man-Seop Lee, Jeong-Sik Woo, Sang-Man Lee, and Jeong-Yong Chung
Opt. Express 13(11) 4224-4229 (2005)

Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses

Alexander M. Streltsov and Nicholas F. Borrelli
Opt. Lett. 26(1) 42-43 (2001)

Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing

Shi-Ling Li, Peigao Han, Meng Shi, Yicun Yao, Bing Hu, Mingwei Wang, and Xiaonong Zhu
Opt. Express 19(24) 23958-23964 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved