Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 20,
  • Issue 7,
  • pp. 1095-
  • (2002)

The Channel Capacity of a Multispan DWDM System Employing Dispersive Nonlinear Optical Fibers and an Ideal Coherent Optical Receiver

Not Accessible

Your library or personal account may give you access

Abstract

We present channel capacity calculations for a multispan dense wavelength division multiplexed (DWDM) system that employs an ideal coherent optical receiver. Both dispersive and dispersion-free single-mode nonlinear optical fibers are considered. Degradation due to interference among Kerr nonlinear noise and optical amplifier noise accumulated along many spans is included in our model calculations. We will show that in the low-power quasi--linear regime, a multispan system can be approximated by an"equivalent"single-span system. The"equivalent"Kerr coefficient for most dispersive fibers is shown to increase with the square root of the number of spans, in contrast to the linear scaling dependence for a dispersion-free fiber. For a conventional fiber with β = -20 ps2/km, our calculated capacity of 10 (2 × 80 km), 8 (8 × 80 km), and 6 (32 × 80 km) bps/Hz indicates that today's technologies with 0.4 bps/Hz have only realized 5% of the theoretical total capacity. We have shown an increased (or decreased) capacity by about 1 bps/Hz per ten-fold increase (decrease) in dispersion.

[IEEE ]

PDF Article
More Like This
On nonlinear distortions of highly dispersive optical coherent systems

Francesco Vacondio, Olivier Rival, Christian Simonneau, Edouard Grellier, Alberto Bononi, Laurence Lorcy, Jean-Christophe Antona, and Sébastien Bigo
Opt. Express 20(2) 1022-1032 (2012)

New bounds on the capacity of the nonlinear fiber-optic channel

Ronen Dar, Mark Shtaif, and Meir Feder
Opt. Lett. 39(2) 398-401 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.