Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 20,
  • Issue 6,
  • pp. 1048-
  • (2002)

All-Optical Phase-Independent Logic Elements Based on Phase Shift Induced by Coherent Soliton Collisions

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate, for the first time to our knowledge, that a fast coherent collision between two Kerr spatial solitons can give rise to a significant phase shift for both interacting beams. The maximal collision-induced phase shift ∼ π rad takes place when the amplitudes of the solitons are equal (η1 = η2) and the length of the interaction zone is comparable with a soliton phase period. Depending on the ratio η2/ η1 and the collision angle between the solitons, the magnitude of the phase shift can be varied within a reasonable range, for example from 180° to 40° . The analysis of the effect performed by the finite-difference beam-propagation method has shown that it is insensitive to the initial phase difference between the incident beams (δi),even in the case when η1 != η2. It has been demonstrated that the phenomenon can be used for all-optical three-soliton logic elements, which are capable of providing more than 3-dB signal amplification and possess δi-independent output characteristics.

[IEEE ]

PDF Article
More Like This
All-optical logic gates based on cross phase modulation effect in a phase-shifted grating

Qiliang Li, Junfeng Song, Xin Chen, Meihua Bi, Miao Hu, and Shuqin Li
Appl. Opt. 55(25) 6880-6886 (2016)

Soliton processing element for all-optical switching and logic

N. J. Doran and David Wood
J. Opt. Soc. Am. B 4(11) 1843-1846 (1987)

The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift

Ming Xu, Yan Li, Tiansheng Zhang, Jun Luo, Jianhua Ji, and Shuwen Yang
Opt. Express 22(7) 8349-8366 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved