Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 20,
  • Issue 2,
  • pp. 267-
  • (2002)

Temperature and Vibration Insensitive Fiber-Optic Current Sensor

Not Accessible

Your library or personal account may give you access

Abstract

A robust interferometric fiber-optic current sensor with inherent temperature compensation of the Faraday effect is presented. Sensor configurations based on Sagnac and polarization-rotated reflection interferometers are considered. The sensing fiber is residing and thermally annealed in a coiled capillary of fused silica. The capillary is embedded in silicone within a ring-shaped housing. It is theoretically and experimentally shown that the temperature dependence of the birefringent fiber-optic phase retarders of the interferometers can be employed to balance the temperature dependence of the Faraday effect (0.7 x 10-4 / C). Insensitivity of the sensor to temperature within 0.2% is demonstrated between - 35 C and 85 C. The influence of the phase retarders on the linearity of the sensor is also addressed. Furthermore, the sensitivity to vibration of the two configurations at frequencies up to 500 Hz and accelerations up to 10 g is compared. High immunity of the reflective sensor to mechanical perturbations is verified.

© 2002 IEEE

PDF Article
More Like This
Vibration-insensitive fiber-optic current sensor

Natale C. Pistoni and Mario Martinelli
Opt. Lett. 18(4) 314-316 (1993)

Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber

G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert
Opt. Express 24(10) 11164-11173 (2016)

Vibration-insensitive polarimetric fiber optic current sensor based on orbital angular momentum modes in an air-core optical fiber

Lina Xiang, Fufei Pang, Zhongyin Xiao, Liang Zhang, Heming Wei, Mengshi Zhu, Siddharth Ramachandran, and Tingyun Wang
Opt. Lett. 49(7) 1753-1756 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.