Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 20,
  • Issue 12,
  • pp. 2196-
  • (2002)

40-Gb/s WDM Transmission With Virtually Imaged Phased Array (VIPA) Variable Dispersion Compensators

Not Accessible

Your library or personal account may give you access

Abstract

We have demonstrated variable dispersion compensation by using a virtually imaged phased array (VIPA) to overcome the small dispersion tolerance in 40-Gb/s dense wavelength-division multiplexing (WDM) transmission systems. By utilizing the periodical characteristics of VIPA compensators, we performed simultaneous dispersion compensation in a 1.28-Tb/s (40-Gb/s × 32 ch; C band) short-haul transmission and confirmed that only two VIPA compensators and one fixed dispersion-compensating fiber are required for a large transmission range of 80 km. This performance can greatly reduce the cost, size, and number of compensator menus in a 40-Gb/s WDM short-haul transmission system. In addition, we achieved 3.5-Tb/s (43-Gb/s × 88 ch; C and L bands) transmission over a 600-km nonzero dispersion-shifted fiber by using VIPA compensators. Although channel-by-channel dispersion compensation is required due to the larger residual dispersion slope in long-haul transmission,the periodical characteristics of the VIPA compensators offer the advantage of considerably reducing the number of different modules required to cover the whole C (or L) band. An adequate optical signal-to-noise ratio, which was the same for all channels, was obtained by using distributed Raman amplification, a gain equalizer,and a preemphasis technique. We achieved a Q-factor of more than 11.8 dB (BER < 10-17 with forward-error correction) for all 88 channels.

[IEEE ]

PDF Article
More Like This
Thermally tunable dispersion compensator in 40-Gb/s system using FBG fabricated with linearly chirped phase mask

Jie Sun, Yitang Dai, Xiangfei Chen, Yejin Zhang, and Shizhong Xie
Opt. Express 14(1) 44-49 (2006)

Long-haul transmission of 35-Gb/s all-optical OFDM signal without using tunable dispersion compensation and time gating

I. Kang, S. Chadrasekhar, M. Rasras, X. Liu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques
Opt. Express 19(26) B811-B816 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved