Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 19,
  • Issue 10,
  • pp. 1532-
  • (2001)

Realistic End-to-End Simulation of the Optoelectronic Links and Comparison With the Electrical Interconnections for System-on-Chip Applications

Not Accessible

Your library or personal account may give you access

Abstract

A detailed comparison of optoelectronic versus electrical interconnections for system-on-chip applications is performed in terms of signal latency and power consumption. Realistic end-to-end models of both interconnection schemes are employed in order to evaluate critical performance parameters. A variety of electrical and optoelectronic interconnection configurations are implemented and simulated using accurate optical device and electronic circuit models integrated under an integrated circuit (IC) design computer-aided design tool. Two commercial complementary metal-oxide-semiconductor (CMOS) technologies (0.8 m and 0.25 m) are used for the estimation of the signal latency and the power consumption as a function of the interconnection length for the different link configurations. It was found that optoelectronic interconnects outperform their electrical counterparts, under certain conditions, especially for relatively long lines and multichannel data links.

[IEEE ]

PDF Article
More Like This
Ultra-Low-Power 10 to 28.5 Gb/s CMOS-Driven VCSEL-Based Optical Links [Invited]

Jonathan E. Proesel, Benjamin G. Lee, Alexander V. Rylyakov, Christian W. Baks, and Clint L. Schow
J. Opt. Commun. Netw. 4(11) B114-B123 (2012)

Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies

Gökçe I. Yayla, Philippe J. Marchand, and Sadik C. Esener
Appl. Opt. 37(2) 205-227 (1998)

Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems

Takashi Kurokawa, Shinji Matso, Tatsushi Nakahara, Kota Tateno, Yoshitaka Ohiso, Atsushi Wakatsuki, and Hiroyuki Tsuda
Appl. Opt. 37(2) 194-204 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved