Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 17,
  • Issue 7,
  • pp. 1166-
  • (1999)

Simple Dynamic Model of All-Optical Gain-Clamped Erbium-Doped Fiber Amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

A simple dynamic model of laser-gain-clamped erbium-doped fiber amplifiers (EDFA's) using ordinary differential equations is presented. The model not only provides a fast means of calculating EDFA gain dynamics, but also shows explicitly how the laser relaxation oscillation frequency and damping constant are affected by design parameters through analytical expressions. It is shown that the dynamic power excursion caused by relaxation oscillations can be reduced by increasing the oscillation frequency. The simplified model has two limitations: first, the amplified spontaneous emission (ASE) spectrum is not fully resolved and the noise figure can not be studied; second, the effect of spectral hole burning, which also causes gain excursion, can not be modeled. The first limitation can be removed by ASE-resolved modeling, where the concept of average inversion is also utilized to save computing time.

[IEEE ]

PDF Article
More Like This
Design and analysis of dynamic erbium-doped fiber amplifier gain-clamping systems with feedback control

Hao Li, Ying Zhang, Yeng Chai Soh, and Changyun Wen
J. Opt. Soc. Am. B 24(8) 1739-1748 (2007)

Modeling and optimization of add–drop dynamics in gain-clamped fiber amplifiers

Jennifer Bryce, Yuxing Zhao, and Robert Minasian
Appl. Opt. 39(24) 4270-4277 (2000)

Low noise figure all-optical gain-clamped parallel C+L band Erbium-doped fiber amplifier using an interleaver

L. L. Yi, L. Zhan, C. S. Taung, S. Y. Luo, W. S. Hu, Y. K. Su, Y. X. Xia, and Lufeng Leng
Opt. Express 13(12) 4519-4524 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved