Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 17,
  • Issue 11,
  • pp. 1931-
  • (1999)

Photonic Bandgap Formation and Tunability in Certain Self-Organizing Systems

Not Accessible

Your library or personal account may give you access

Abstract

We describe the microfabrication and bandstructure of large scale three-dimensional (3-D) photonic bandgap (PBG) materials based on self-organizing templates. The simplest of these templates is an fcc lattice of close-packed, weakly sintered spheres. Other templates include hcp and hexagonal AB2 self-organizing photonic crystals. These photonic crystals may be converted into PBG materials by partially infiltrating the template with high refractive index semiconductors such as Si, Ge, or GaP and subsequently removing the template. The resulting "inverse opal" structure exhibits both a photonic pseudogap and a complete (3-D) PBG in the near visible spectrum, spanning up to 15% of the gap center frequency. The local density of states (LDOS) for photons exhibits considerable variation from point to point in coordinate space and reveals large spectral gaps even in the absence of a PBG in the total density of states. These gaps in the LDOS may lead to novel effects in quantum and nonlinear optics when active atoms or molecules are placed within the PBG material. These effects include anomalous, low threshold nonlinear response, collective atomic switching, and low-threshold all-optical transistor action. When an optically birefringent nematic liquid crystal is infiltrated into the void regions of the "inverse" opal PBG material, the resulting composite material exhibits a completely tunable PBG. In particular, the 3-D PBG can be completely opened or closed by applying an electric field which rotates the axis of the nematic molecules relative to the inverse opal backbone.

[IEEE ]

PDF Article
More Like This
Accurate calculation of the local density of optical states in inverse-opal photonic crystals

Ivan S. Nikolaev, Willem L. Vos, and A. Femius Koenderink
J. Opt. Soc. Am. B 26(5) 987-997 (2009)

Tunable Bragg peak response in liquid-crystal-infiltrated photonic crystals

Davy P. Gaillot, Elton Graugnard, Jeffrey S. King, and Christopher J. Summers
J. Opt. Soc. Am. B 24(4) 990-996 (2007)

Electrically switchable photonic crystals based on liquid-crystal-infiltrated TiO2-inverse opals

Ying Zhang, Ke Li, Fengyu Su, Zhongyu Cai, Jianxun Liu, Xiaowen Wu, Huilin He, Zhen Yin, Lihong Wang, Bing Wang, Yanqing Tian, Dan Luo, Xiao Wei Sun, and Yan Jun Liu
Opt. Express 27(11) 15391-15398 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved